
Data Structures : Queue Lecturer : Dr. Raidah Salim

Queue Data Structures

 Queue is a linear data structure, in which the first element is inserted from one
end called REAR(also called tail), and the deletion of existing element takes place
from the other end called as FRONT(also called head). This makes queue as
FIFO(First in First Out) data structure, which means that element inserted first will
also be removed first.

The process to add an element into queue is called Enqueue and the process of
removal of an element from queue is called Dequeue.

Basic features of Queue

1. Like Stack, Queue is also an ordered list of elements of similar data types.

2. Queue is a FIFO(First in First Out) structure.
Once a new element is inserted into the Queue(Enqueue(also called enq,
enque, add, or insert), all the elements inserted before the new element in
the queue must be removed, to remove the new element(called
Dequeue(also called deq, deque, remove, or serve.).

3. peek() function is used to return the value of first element without dequeuing it.

Applications of Queue

Queue, as the name suggests is used whenever we need to manage any group of
objects in an order in which the first one coming in, also gets out first while the
others wait for their turn, like in the following points :

1. Serving requests on a single shared resource, like a printer, CPU task scheduling

etc.

2. In real life, Call Center phone systems uses Queues to hold people calling them in

an order, until a service representative is free.

3. Handling of interrupts in real-time systems. The interrupts are handled in the

same order as they arrive i.e First come first served.

Logical Structure

Storage (physical) Structure
 Storage structure depends on the implementation of queue , array or linked list
structure.
Example: Draw queue in each the following cases:

1. enqueue('A') 2. enqueue('B') 3. enqueue('C') 4. dequeue();

Data Structures : Queue Lecturer : Dr. Raidah Salim

Implementation of Queue
 Queue can be implemented using an Array, Stack or Linked List.

 Implementation of Queue using Array

 The easiest way of implementing a queue is by using an Array. Initially
the first(head, front) and the last(tail, rear) of the queue points at the first index of
the array (starting the index of array from 0). As we add elements to the queue, the
tail keeps on moving ahead, always pointing to the position where the next element
will be inserted, while the head remains at the first index.

In the following Queue class:
class queue {
 int first=-1;
 int last=-1;
 int qu []=new int [10];

 boolean isempty() {
 return (first == last); }

 boolean isfull() {
 return (last==qu.length-1);}

 void enQueue(int val) {
 if (isfull())
 System.out.println("Queue is full");
 else {
 last++;
 qu[last] = val; }
 }

Data Structures : Queue Lecturer : Dr. Raidah Salim

 int deQueue() {
 int val=-1;
 if (isempty()) {
 System.out.println("Queue is empty, cant dequeue");
 else {
 first++;
 val = qu[first];}
 return val;}
 }

Exercise: Suppose the following operations

1. dequeue(): Returns and removes item from front of queue.
2. void enqueue(int item): Adds item to last of queue.
3. boolean isEmpty(): Returns true if queue has no elements in it.
4. boolean isFull(): Returns true if queue full.
5. int peek() : Returns item at front of queue without removing it.
6. int size() : Number of elements in queue.

 Show the results of these operations on an initially empty integer queue
named q with Draw the queue contents after each operation, making clear where
the front is, and give the return value of each non-void method.

1. q.enqueue(5)
2. q.enqueue(8)
3. q.peek()
4. q.enqueue(3)
5. q.dequeue()
6. q.enqueue(10)
7. q.size()
8. q.enqueue(4)
9. q.dequeue()
10. q.dequeue()
11. q.enqueue(1)
12. q.dequeue()
13. q.enqueue(2)
14. q.dequeue()
15. q.enqueue(3)
16. q.dequeue()
17. q.size()
18. q.enqueue(4)
19. q.peek()
20. q.dequeue()

Data Structures : Queue Lecturer : Dr. Raidah Salim

 Implementation of Queue using linked list

In the following Queue class in this case:
class QueueLinkedList{
 node first = null;
 node last = null;

 boolean isEmpty() {
 return (first == null);}

 void enque(int data) {
 node n = new node(data);
 if (isEmpty()) {
 n.next = first;
 first = n;
 last = n;}
 else {
 last.next = n;
 last = n;
 last.next = null;}
 }

 void deque() {
 if (first==null)
 System.out.println("Queue is empty, cant dequeue");
 else
 first = first.next;}

 void displayList() {
 node current = first;
 while (current != null) {
 System.out.print(current.data+" ");
 current = current.next;}
 }
}

Circular Queue

Suppose the following queue:

Data Structures : Queue Lecturer : Dr. Raidah Salim

 and we went to execute enqueue('L'), in this case queue was full, it is
possible for the last of the queue to reach the end of the (physical) array
when the (logical) queue is not yet full. Because there may still be space
available at the beginning of the array, the solution is to let the array can be
treated as a circular structure in which the last slot is followed by the first slot
as shown in below figure.

To get the next position for the last indicator, we can use an if statement

in enQueue method:
 if (last == (qu.length - 1))
 last = 0;
 else
 last = last + 1;
 And also in deQueue method:
 if (first == (qu.length - 1))
 first = 0;
 else
 first = first + 1;

Numeric for Circular Queues
 Another way to reset last is to use the modulo (%) operator:
 Front increases by (1 modulo size(length of queue) after each dequeue().
 Front = (Front+1) % size;
 Rear(or last) increases by (1 modulo size(length of queue)) after each

enqueue():
 Rear= (Rear +1) % size;

 Example:
 if last=3 and size=5 then:

 1%5=1

 2%5=2

 3%5=3

 4%5=4

 5%5=0

 6%5=1

 7%5=2 ...etc

Data Structures : Queue Lecturer : Dr. Raidah Salim

 The following example shown the queue is become full when first=last

And also from the following cases shown the queue is empty when first=last

Then, the condition last=first (in isempty() method) and the condition
last=qu.length(in isfull() method) are not suitable in circular queue, these methods
must be as follow:
boolean isfull() {
 return (first==last && first !=-1); }

 boolean isempty() {
 return (last==-1 && first==-1);}

and in dequeue method if (last=first) must restart the queue as:

first=-1;
last=-1;

Double Ended Queue
 Double Ended Queue is also a Queue data structure in which the insertion and
deletion operations are performed at both the ends (front and rear). That means, we
can insert at both front and rear positions and can delete from both front and rear
positions.

Data Structures : Queue Lecturer : Dr. Raidah Salim

Double Ended Queue can be represented in TWO ways, those are as follows...
1. Input Restricted Double Ended Queue
2. Output Restricted Double Ended Queue

Input Restricted Double Ended Queue

In input restricted double ended queue, the insertion operation is performed at only
one end and deletion operation is performed at both the ends.

Output Restricted Double Ended Queue

In output restricted double ended queue, the deletion operation is performed at
only one end and deletion operation is performed at both the ends.

Problem: Implementing the enqueue, dequeue, Peek, Clear in the Double Ended
Queue.
Hint: In the following algorithm for each above operation

enqueue operation
Create new object(NewItem)
If rear points to null
 rear= NewItem
 Front = NewItem
Else
 NewItem.next = rear
 rear= NewItem

DeQueue operation
If front points to null
 print (the queue is empty)
Else
 for (current = Rear, current.next != Front, current = current.next);
 Front = current;

Peek operation
If Front points to null
 print (the queue is empty)
Else
 return top

Data Structures : Queue Lecturer : Dr. Raidah Salim

Clear operation
If Front points to null
 print (the stack is empty)
Else
 Rear = null;
 Front = null;

Q1: Write a printAll method which display all elements' data of the queue.
Q2: Write a find method which search about a specific data in double ended queue.
Q3: Write a sortAsc method which sorts the elements of the queue ascending.

Implementation of Queue using Stacks

 A Queue is defined by its property of FIFO, which means First in First Out, i.e the
element which is added first is taken out first. Hence we can implement a Queue
using Stack for storage instead of array.

For performing enqueue we require only one stack as we can directly push data into
stack, but to perform dequeue we will require two Stacks, because we need to
follow queue's FIFO property and if we directly pop any data element out of Stack, it
will follow LIFO approach(Last in First Out).

In all we will require two Stacks, we will call them InStack and OutStack.
class Queue {
 Stack S1, S2;
 //defining methods
 void enqueue(int x);
 int dequeue();
}

As our Queue has Stack for data storage, hence we will be adding data to Stack,
which can be done using the push() method, hence :

void enqueue(int x) {
 S1.push(x);
}

When we say remove data from Queue, it always means taking out the First element
first and so on, as we have to follow the FIFO approach. But if we simply
perform S1.pop() in our dequeue method, then it will remove the Last element first.

Data Structures : Queue Lecturer : Dr. Raidah Salim

int dequeue() {
 while(S1.isEmpty()) {
 x = S1.pop();
 S2.push(); }

 //removing the element
 x = S2.pop();
 while(!S2.isEmpty()) {
 x = S2.pop();
 S1.push(x); }
 return x;}

Example1: Draw the queue contents after each operation:

 maxsize=4:enq(3), enq(4), enq(5), deq(), deq(), enq(6), enq(7), deq(), deq(), deq()

Example2: Draw the queue contents after each operation

 maxsize=4:enq(3), enq(4), enq(5), deq(), deq(),deq()

Note:

Insertion of element Deletion of element

full: if front=-1 & rear=maxsize empty: if front=rear

 rear=rear+1 front=front+1

 queue(rear)=item item=queue[front]

Data Structures : Queue Lecturer : Dr. Raidah Salim

Circular Queue

In this queue the rear point to the beginning of queue when it reaches end of the

queue

 insertion deletion

queue(rear)=item item=queue(front)

rear=(rear+1) mod maxzise front=(front+1) mod maxzise

full: first==last && first !=-1 empty: last==-1 && first==-1

Deque(Double Ends Queue)

In this data structure insertion and delectation can be perform at both ends.

 Input Restricted queue Output Restricted queue

insertion is performed at only one end(rear) deletion is performed at only one
end(rear)

deletion is performed at both the ends. insertion is performed at both the ends.

	Queue Data Structures
	Basic features of Queue
	Applications of Queue

	 Implementation of Queue using linked list
	Input Restricted Double Ended Queue
	Output Restricted Double Ended Queue
	Implementation of Queue using Stacks

	Input Restricted queue Output Restricted queue

